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V

FORWARD MULTIPLE SCATTERING CORRECTIONS
AS FUNCTION OF DETECTOR FIELD OF VIEW

I. INTRODUCTION

Low visibility atmospheric conditions occur in the presence of heavy

concentrations of atmospheric aerosols such as dust, smoke and fog.

Scattering of laser radiation by such aerosol clouds, being basically a

multiple scattering process, is very difficult to predict. A fruitful

approach to the problem has been a Monte Carlo technique, because it can

1-3
handle strange geometries as well as inhomoqeneities . Recently, considerable

attention has been paid to analytical solutions to the equation of transfer

4-9in a form appropriate for the laser beam propagation problem -
. Although

exact solutions have not been obtained to date, there are some special cases

where simple and useful approximate solutions to the equation of transfer are

available. For tenuous distribution of scatterers, the 'irst-order multiple

scattering theory can be used, and for dense distribution the diffusion

approximation is appropriate. If the particle size is large compared with

incident wavelength, the energy scattered by the particle is largely confined

within a small angle in the forward direction and, therefore, by employing the

small-angle approximation it is Possible to simplify the equation of transfer.

In Ref. 8, a systematic study of contributions of increasing order of scat-

tering for both realistic and model aerosols has been conducted.

i7
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10,11
As indicated by Ishimaru 0 , the first-order multiple scattering

approximation is applicable when the density of scatterers is so low that

the diffuse (incoherent) intensity is considerably smaller than the reduced

(coherent) intensity. This will certainly be the case if optical distance

traversed by the bean is much smaller than unity. However, the same weak

fluctuation case is also encountered in the situations where the receiver

has a narrow receiving angle. In this case, the amount of scattered

intensity entering into the receiver is small compared with the direct

coherent intensity, and therefore the received field is predominantly

coherent. The effect of the detector's finite field of view on the

received oower has been a subject of comprehensive investigations related

to forward scattering corrections for optical extinction measurements
12 17

The purpose of this paper is to study the effect of a finite field of

view on the intensity and the received power of a laser beam undergoing

multiple scattering. Our analytic approach is based on the theory of

Dolin i and Fante 19 2 2 , summarized in Section II. In Sections II and IV,

we apply this theory to Gaussian beams. Numerical results relevant to

the beam propagation in a water cloud and model aerosol particles are

presented in Section V.

II. THE FANTE-DOLIH THEORY

Our considerations will be based on the equation of radiative trans-

fer for the radiance (specific intensity) distribution function, I( ,rz).

In the small angle approximation, I(o,r,z) satisfies

3z +! rl as -( $ 1(;.,r z) d(1

~8

I________________________ _____________________________



where a and as are volume extinction and scattering coefficients (m- 1 ) for

the aerosol medium; r is the component of the position vector transverse to

the z axis; and 0 is the transverse component of the unit propagation vector

(Fig. 1 in Refs. 8 and 9).

is 19-22In the work of Dolin and Fante - , which applies to sharply peaked

phase functions, I(O',r,z) in the integrand on the right hand side of Eq. (1)

is expanded in Taylor series about M' - - ore precisely, I(,r,z) is

split into

10 ,r, Z) r (rZ) + I ,r,z) (2)

where superscripts o and s refer to unscattered and scattered radiance,

respectively. Then, one expands

(5s) -. ,. (s) .,.

I (r,z) - (S ,rz)

+ r s I (r+.3
k

+ .1 (0' - ) ((S - 4+
2 k X k ;k t z

where k and 9 refer to the Cartesian components of the . vector. Recall

that + 0 9

Equation (1) now yields

(0 - 1 )

9
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while I ()is determined from the nonhomogeneous equation

, .31 (s)_  "  w 2° < 2 '. q.(S) al (s ) _

*~(0 2~) -

+ a(l - )I c YW f NO - I') i (o (0',r,z) d20' (5)

where w a l sa is the single scattering albedo; and <0 > is defined as

2P> f () $2 2 (6)

In derivinq Eq. (5) we have neglected the terms of higher order than second

in Eq. (3). The solutions to Eqs. (4) and (5) can be obtained by the method

of characteristics in the Fourier space of the variables and r. With

the Fourier transforms defined generically as

- 20 d2r T + n r)I(,fnz) d 0 lr) (7)

-00 it4
d ~ (b e (8)

we obtain the following solutions

r Co n,z) w iC& + nzQn,z 0) e (9)

and

, (.n.z) - I(z + rz,-,z 0) f Pc * ,(z-z', )

z

exp { - fI 4 nV l(z-z)1 + a(l-w) I dz -} dz' (10)
z

for the unscattered and scattered contributions, respectively.

I



III. CASE OF COLLIMATED GAUSSIAN BEAM

Ile assume now that in the single scattering theory the scattering phase

function P(W is given by a Gaussian function, i.e.,

a- exp (-o 2 -2
T

and that the incident collimated beam, directed along the z axis, has a

Gaussian spatial form, i.e.,

-0- i 1  2 -(2) 2 22
I(0 ,r,z - 0) - F 0 - 2 (0) exp (-y r2) (12)

where 5(2) is the Dirac delta function.

In the situation modeled by Eqs. (11) and (12), we obtain, after performing

the inverse Fourier transforms of Eqs. (9) and (10), the explicit formulas

(0) - ~ (s) ('
for I 0,rz) and I rz). They read

2 -2
(0) ~ 1 -az -y r (2

I (0,r,z)= F - e e r 6(2) ) (13)

and

()F Crwe -az  -2
Is) (1,r,z) = o dz' (4 A(z') C(z') -2 (z')](2 n) 2

- A(z')r - (zl)-°r + C(Z')P Uoz'44A(z')C(z') - 2}e()

where the functions A, B, and C are defined as

A(Z') -1 awz'
4a2

B(z') + 2' 2
4et2

C(Z') + ,2 + aZ' 3 /3 (5

2 2
4Y 4ai

12
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In polar coordinates (e,b), the vector 0 can be expressed by

Ox M e cos b

Oy - 6 sin b (16)

For a detector having the field of view (FOV) half-angle, 8 D, the

received intensity is obtained from Eq. (14) after integration over the

angle b in the range (0,2v) and over 6 in the range (0, ) . The received

intensity F ( D r,az) corresponding to the scattered beam thus becomes

OD

F ( ) D',,az) f I I () O,r,az)@ de (17)

0

where

(s) F X x 2 x
I (6r, C 2 j 4A(-)C(3) - B ( 1

0

•I B r B(x/G)
4A(x/C)C(x/a) - B2 (WO

Sexo [- A(x/O)r2 + C(x/) 2  WX
4A(x/o)C(x/G) - 82 (x/a)

Here I is the modified Bessel function of zeroth order, and x is a dimensionless0

integration variable.

The contribution coming from the unscattered part of the beam is

2-2
(o) -1 -Oz e-y r (19)* F ( ,z) F e r(9

It is thus seen that the numerical results can be extracted from this

theory in a rather simple manner by performing merely a double integration.

13
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IV. CASE OF GENERAL GAUSSIAN BEAM

More generally, one can account both for the spatial and angular divergence

of the laser beam assuming a Gaussian law of the form

-2 2 -2 22 2 -2
I(0'r,z = 0) - F a B y r exp(- B1 *- y r ) (20)0

for the incident beam. Here, the parameter B describes the angular divergence.

3y following exactly the same line of reasoning as in Section III, we

obtain the following contributions F (9,r,oz) corresponding to the scat-

tered beam, viz.,

2 I (s)
F(s)JDyr,arz) 9 0 ( 9 eDYrcz) 9' d8' (21)

* 0

where

(S)z1(' yr,z) = F 0 w z e ,/2t

+ Jo [,((x/U) zO} C(¢X') z0} - B2 ((x/o) zo]

S(,yr) - B((x/a) za)/y ]
o jA((KxI- zOa C((x/c) zal - B2 ((x/U) ,a

2 24 C2x/
+(x yr) A((x/a) za)/y +C(/)Z0,16

4A{((X/C) zC} c{(xl) zo} - B2{(x/0) za}

+ exp(w xa z) , dx' (22)

and I is the modified Bessel function of zeroth order.
0

14



For the unscattered beam, we obtain

(0 2 2
o ( e) D' yraz) - 2F B0 exp(-oz) aD2/I!

+ fo 1 ede' 1o00(Y/a) e D (yr) O

2- [(_(/0)2 (GZ) 2 +' B2 D2 2

+ exp (-(yr) 2  / + 82] e2 2 (23)

The integrals in Eqs. (22) and (23) have limits 0 and 1. This choice of

limits anticipates the use of Gaussian quadrature in numerical computation.

V. RESULTS AND DISCUSSIONS

The numerical values were obtained for the on-axis intensities as a

function of 8D, and the plots shown in Figs. 1-3 depict the unscattered

(reduced) intensity (squares), scattered or diffuse intensity (circles), and

total intensity (triangles) on the beam axis for optical depth T - 1, 4, and

1Q, respectively. A divergent beam with the parameters B - 2/(y)) and

y = 1.0 cm- 1 is assumed to be propagating with the Deirmendjian water cloud2 4

model Cl. For X - 0.45 ^, the extinction coefficient is obtained from

the MLie theory computations when a modified game distribution is taken

from water cloud particle size distribution. One also obtained ax - 46.80 rad 1

for the Gaussian fit to the phase function. For a coaxial detector, with a

diameter R D - 1.0 cm, the same as the laser beam diameter, the intensity F

becomes a function of 8D  and z. We normalize the intensities by dividing

15
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Figure 2. Normalized intensity on the beam axis as function of detector

FOV corresponding to a - 46.80 rad- 1, RD - 1.0 cm, and T - 4.0.
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out the factor F C0) OD -, z 0). For the sake of clarity in graphical

presentation, we also scale the normalized intensities by the ultiplicative

factor a:<;(t).

In order to investigate the significance of the optical thickness, we

calculated the power received by a coaxial detector of radius l M I ca.

If F( ,r,T) denotes generically the beam intensity, then the received

power is defined as

P 1 - 27r D F(,VT) r dr (50)

The received power is also scaled by the multiplicative factor exp(T),

gand the power received at z - 0 is divided out. The numerical values were

obtained for received power for a coaxial detector of diameter R. - 1 cm,

and the situation is depicted in Figs. 4-6 corresponding to the same parameters

as in Figs. 1-4, respectively. As the FOV increases, both the intensity

and the received power saturate rapidly, independently of the optical depth.

This corresponds to the situation of an open detector. The contribution of the

scattered power becomes dominant in the saturation region for optical depth

of the order of 10.

Gaussian phase functions as given by Eq. (11) were best fitted in Ref. 8

to the exact His phase functions for monodisperse aerosols with radii in the

range from 2.01 to 40.2 Wm. In Figs. 7-9, we show the intensity vs.

detector's FOV. In addition, we show the received power vs. FOV for

T - 4.0 (Fig. 10). These sets of results were computed fo the model

particles characterized by the parameters - 289.33 red-1, and

18
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7 = - --2. .. .

- 5.0 x 10" cm2 at ) - 0.45 Umn, for a coaxial detector of diameter

RD - 1 cm. Note that the phase function and the Gaussian fit to the forward

lobe of the Hie phase function are plotted in Fig. 3 of Ref. 8.

In order to study the effect of the detector's radius RD we let

assume values smaller and larger than the beam diameter of the 1.0 cm,

viz, RD - 0.2 cm and 2.0 cm. Results were obtained for the same parameters

as in the case of RD - 1.0 cm. However, for the sake of clarity we present

only the results for T - 4.0 for the two cases, viz, RD - 0.2 cm

(Figs. 11-12) and RD - 2.0 cm (Figs. 13-14). Figures 11-12 depict the

corresponding values of intensity and received power as functions of FOV

for RD - 0.2 cm, whereas, Figs. 13-14 depict the corresponding values for

RD - 2.0 cm. The three cases (RD - 1.0, 0.2 and 2.0 cm; T - 4.0) for

large particles with phase function parameter a - 289.33 cm-1 show clearly

the contrast in the behavior of the intensity and the received power.

The Fante-Dolin approximation employed in this paper enables one to

estimate the corrections to the 8ouguer-Beer law for a receiver having a

finite field of view, as for example in Ref. 25.

VI. RECOMMENDATIONS

1. It should be noted that the small-angle approximation is valid for

highly forward-peaked phase functions. It is, therefore, recommended that

approaches be developed to deal with the case of MS in laser beams traversing

small size aerosol particles, with broadly-peaked phase functions.
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FOV for the same parameters as in Fig. A except R D- 0.2 cm.

27



I0,

00

O -2 LARGE SIZE MONODISPERSKJNS

10 X=0.425 a=, 28933rod1I
u=5.040-3 CM-1,
RL 1.0~ cm, RD =0.2 cm

CASE 2' RD~ RL
-3 10 OPTICAL DEPTH 7=4.0

E3 6- UNSCATTERED
e--e- SCATTERED
-h-t-TOTAL

01)00 0.002 0004 01)06 0.00 0010 0012

FOV, rad
Figure 12. Received power (arbitrary units) on the beam axis as a
function of detector FOV, for the same parameters as in Fig. 11.

The received power is multiplied by exp (T).
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2. It is recommended that experiments and numerical computations be

performed to (a) determine the effects of the detector field of view on

both the extinction and backscattering function measurements and (b) investigate

the effects of beam diameter on optical extinction measurements.

3. it is recommended that the above investigation be repeated for the

case of backscattering, which is of great importance for single-ended

electro-optical systems.
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